

Project Three – There is a Recyclable Among us:

Design a System for Sorting and Recycling Containers

ENGINEER 1P13 – Integrated Cornerstone Design Projects

Tutorial T07

Thurs-14

Mahmoud El Shafei (elshafem)

Yuvraj Sandhu (Sandhuy)

Kelvin Weng (wengc3)

Kartik Chaudhary (chaudk4)

Submitted: February 7, 2021

Table of Contents

Academic Integrity Statement	3
Executive Summary	5
Project Schedule Meetings:	e
Preliminary Gantt Chart:	6
Final Gantt Chart:	6
Logbook of Additional meetings:	7
Scheduled Weekly Meetings:	10
Weekly Design Studio Agenda and Meeting Minute's:	10
Design Studio Worksheets:	12
List of Sources:	36
Appendices	36
Appendix A – Screenshots of solid model:	36
Appendix B – Engineering Drawings and Exploded Assembly:	40
Appendix C – Screenshots of Computer Program:	45

Academic Integrity Statement

The student is responsible for performing the required work in an honest manner, without plagiarism and cheating. Submitting this work with my name and student number is a statement and understanding that this work is my own and adheres to the Academic Integrity Policy of McMaster University.

Yuvraj Sandhu

400319134

400300382

Signed by: e2654182-da84-4556-bcb2-444c36416fbc

The student is responsible for performing the required work in an honest manner, without plagiarism and cheating. Submitting this work with my name and student number is a statement and understanding that this work is my own and adheres to the Academic Integrity Policy of McMaster University.

Kartik Chaudhari

Signed by: e2654182-da84-4556-bcb2-444c36416fbc

The student is responsible for performing the required work in an honest manner, without plagiarism and cheating. Submitting this work with my name and student number is a statement and understanding that this work is my own and adheres to the Academic Integrity Policy of McMaster University.

Kelvin Weng 400182164

The student is responsible for performing the required work in an honest manner, without plagiarism and cheating. Submitting this work with my name and student number is a statement and understanding that this work is my own and adheres to the Academic Integrity Policy of McMaster University.

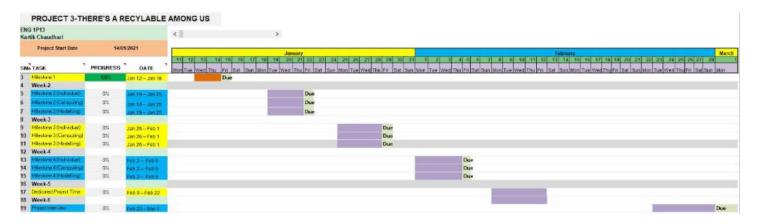
Mahmoud El Shafei 400297215

Recoverable Signature

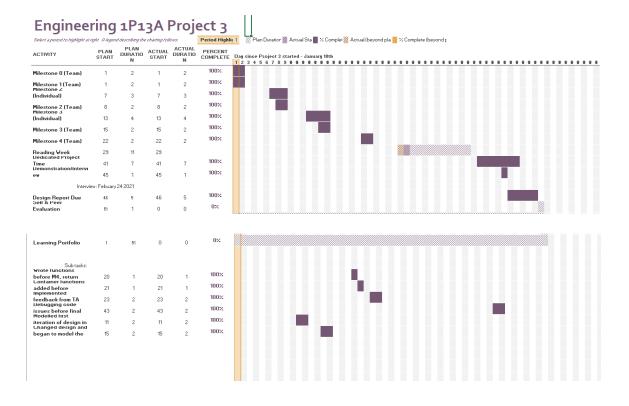
Signed by: e2654182-da84-4556-bcb2-444c36416fbc

Executive Summary

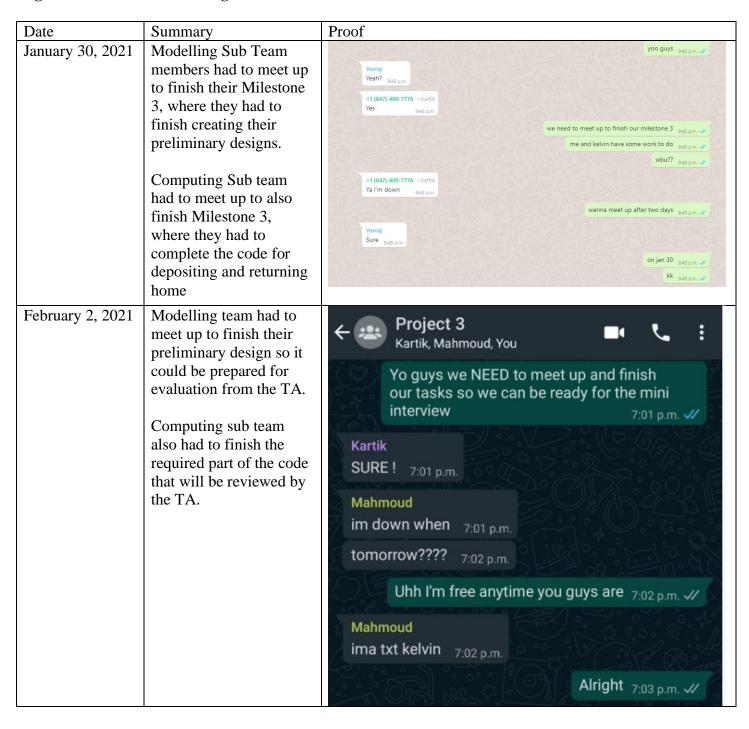
Around thirty percent of materials that are placed in recycling bins are not recyclable [1], thereby causing many recycling materials to be lost every year because they are mixed with waste. Canada only recycles just 9 percent of its recyclable plastics, leaving the rest to be incinerated or placed in a landfill with other garbage [2]. There are stations with sorting facilities that aid in separating trash from recyclable materials, however, they cannot always recycle everything that should be recycled. Sorting facilities are equipped with sensors to detect different kinds of materials, as well as the presence of contaminants. In this project, we were tasked with designing a system for sorting and recycling containers based on their material [3].

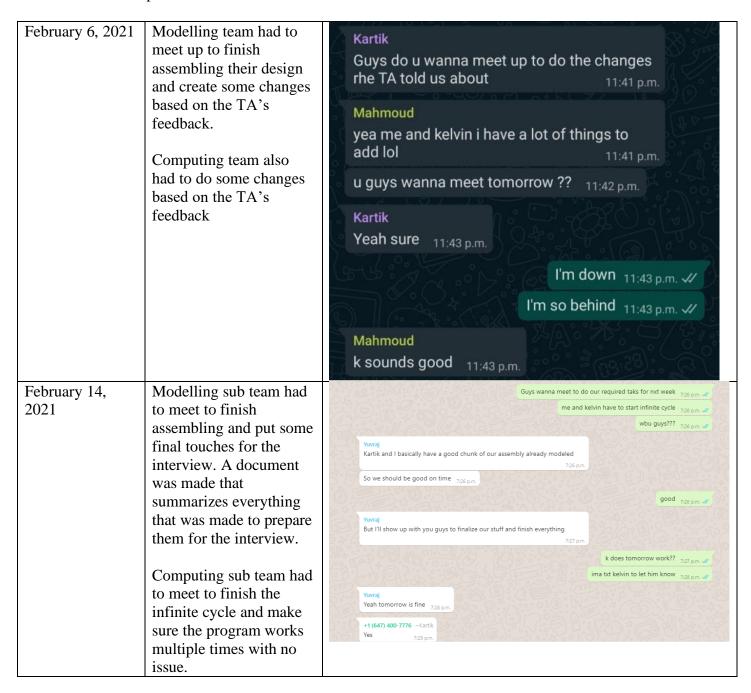

The main function of the hopper and lifting mechanism is to securely transport the recyclable and deposit materials without any issues. The hopper must fit within the distance between the rungs on the baseplate and must fit multiple containers. To guarantee the materials within the hopper can be deposited without any faults, a curved extrusion was added for the container to trip over and fall into a bin to compensate for the limits of the lifting mechanism. For the lifting mechanism, it must fit within the end of the baseplate and the actuator must be constrained to the baseplate. With these constraints, the lifting mechanism had to be simple and size efficient. The lifting mechanism designed utilized a rack and pinion design to fit these requirements and was able to lift the hopper given its smaller size. Since the actuator had to be constrained to the baseplate, a single gear would be insufficient in lifting the rack to an appropriate height for the hopper to deposit the containers. To avoid this issue, we used a second gear that would maximize the full size of the rack. For the computing sub-team, their task revolved around the idea of designing a computer program that identifies different types of garbage (containers) and deposits it into its designated bin.

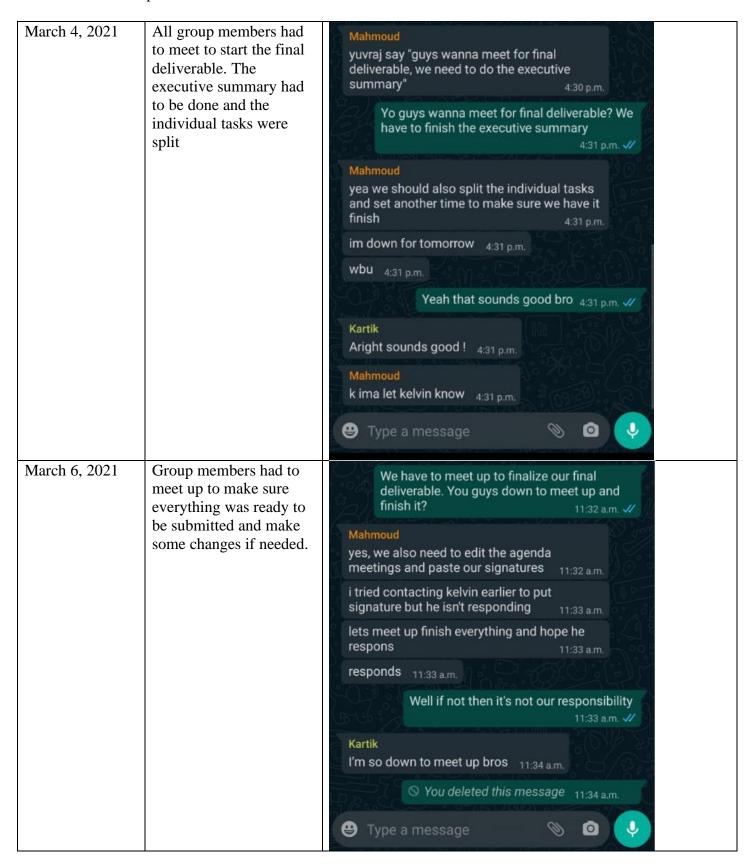
At the start of the program, the container attributes are already determined, and the container is positioned in the Sorting Station for pick up. A robotic arm (Q-arm) then loads the container onto the Q-bot. The Q-arm keeps loading containers onto the Q-bot until the following: a container with a different ID than what is already on the Q-bot is positioned on the Sorting Station, three containers have been placed on the Q-bot, or the total mass of the new container positioned in the Sorting Station as well as all the containers currently on the Q-bot exceeds 90-grams. The Q-bot transfers the container(s) to the correct bin. The Q-bot then deposits the container into the correct bin. The Q-bot then returns to its Home position.


The use of newer sensor technology paired alongside efficient lifting mechanisms paves the way for the future of recyclability.

Project Schedule Meetings:


Preliminary Gantt Chart:




Final Gantt Chart:

Logbook of Additional meetings:

Scheduled Weekly Meetings:

Weekly Design Studio Agenda and Meeting Minute's:

January 14, 2021	Attendance/Updates:		
,	Everyone attended the meeting		
	Check-in from last week:		
	No work or check-in was asked from last week		
	Pre-lab Assignment Check-in:		
	No pre-lab in this week		
	How is Milestone going?		
	1. Introduction with TA and group members – 1st DS		
	2. Discuss Why/How Ladder		
	3. Feedback on Objectives vs Constraints		
	Future Tasks/Next week:		
	Divide team into sub teams		
	Complete individual sketches		
	Complete individual research of sensors		
	Complete Preliminary Gantt Chart		
January 21, 2021	Attendance/Updates:		
	Everyone attended the meeting		
	Check-in from last week:		
	Assigned work for last week was done and submitted		
	Pre-lab Assignment Check-in:		
	Research for sensors had to be completed		
	2 mechanism concept Sketches is completed		
	How is Milestone going?		
	Discussing all applications for the sensors in computer program		
	Evaluating the mechanism sketches based on metrics and choosing the best design		
	Future Tasks/Next week:		
	Complete individual computer program workflow		
	Complete detail individual sketch of device assembly		
* **			
January 28, 2021	Attendance/Updates:		
	Everyone attended the meeting		
	Check-in from last week:		
	Assigned work for last week was done and submitted		
	Pre-lab Assignment Check-in:		
	Individual program workflow is completed		
	Detail sketch of device is finished		
	How is Milestone going?		
	Planning each task for the program and writing pseudocode		
	Creating a solid model of the components of our design assembly, then taking		
	screenshots Future Tooks/Next weeks		
	Future Tasks/Next week:		
	Completed modelling and assembling of device components		
	Complete 3 out of 5 program tasks		

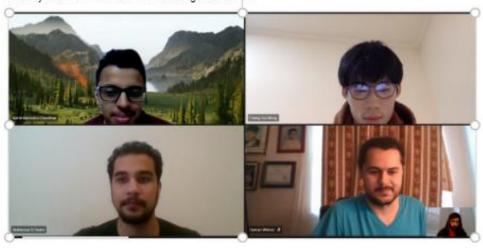
	Getting for ready for mini-interview.
February 4, 2021	Attendance/Updates:
	Everyone attended the meeting
	Check-in from last week:
	Assigned work for last week was done and submitted
	Pre-lab Assignment Check-in:
	modelling and assembling of device components are not completed due to Inventor
	crashing (Not completed)
	2 out of 5 tasks were finished (Not completed)
	How is Milestone going?
	Attending the mini-interview and getting feedbacks from the TA
	Documenting Feedback
	Making changes based in the feedback that was given
	Future Tasks/Next week:
	Continue working on assembly and code.
February 18, 2021	Attendance/Updates:
	Everyone attended the meeting
	Check-in from last week:
	Assigned work for last week was done and submitted
	Pre-lab Assignment Check-in:
	No pre-lab was required for this week
	How is Milestone going?
	Dedicated work time
	Future Tasks/Next week:
	Getting ready for the individual interview
February 25, 2021	Attendance/Updates:
	Everyone attended the meeting
	Check-in from last week:
	Make sure that program and device assembly is ready to be presented
	Pre-lab Assignment Check-in:
	No pre-lab was required for this week
	How is Milestone going?
	Attending interview
	Future Tasks/Next week:
	Work on final deliverable

Design Studio Worksheets:

Milestone 0

PROJECT THREE: MILESTONE 0 - COVER PAGE

Team


Thurs-14

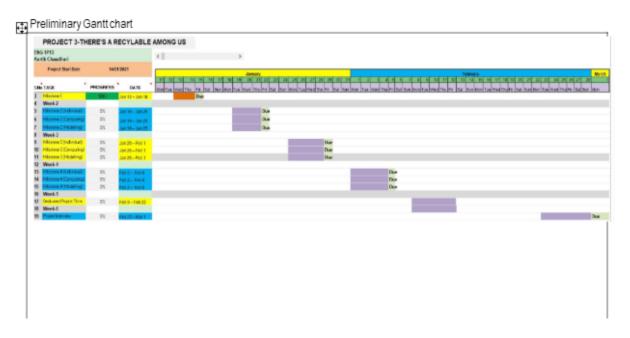
Number:

Please list full names and MacID's of all present Team Members

Full Name:	MacID:	
Kartik Chaudhari	chaudk4	
Mahmoud El Shafei	elshafem	
Kelvin Weng	wengc3	
Dariusz Wolosz	wolosd1	
Yuvraj Sandhu	Sandbuy	

Insert your Team Portrait in the dialog box below

/IIL	ESTONE 0 – TEAM CHARTER	Team Thurs-14 Number:
	ming Personnel Administrative Portfolio: or to identifying Leads, identify each team members incoming expe	rience with various Project Leads
	Team Member Name:	Project Leads
1.	Kartik Chaudhari	□M ⊠A □C ⊠S
2.	Mahmoud El Shafei	□M □A ⊠C ⊠S
}.	Kelvin Weng	□M ⊠A □C ⊠S
١.	Dariusz Wolosz	□M⊠A⊠C⊡S
j	Yuvraj Sandhu	⊠M⊠A□C□S


Role:	Team Member Name:	MacID
Manager	Kartik Chaudhari	chaudk4
Administrator	Mahmoud El Shafei	elshafem
Coordinator	Kelvin Weng	wengc3
Subject Matter Expert	Yuvraj Sandhu	Sandhuy
Subject Matter Expert	Dariusz Wolosz	wolosd1

Identify team member details (Name and MACID) in the space below.

MILESTONE 0 - PRELIMINARY GANTT CHART (TEAM MANAGER ONLY)

	,
Team	Thurs-14
Number:	

Full Name of Team Manager:	MacID:
Kartik Chaudhari	chaudk4

Milestone 1

PROJECT THREE: MILESTONE 1 - COVER PAGE

Team Number: THURS-14

Please list full names and MacID's of all present Team Members

Full Name:	MacID:
Mahmoud El Shafei	elshafem
Yuvraj Sandhu	Sandhuy
Kelvin Weng	wengc3
Kartik Chaudhari	chaudk4
Dariusz Wolosz	wolosd1

PAGE BREAK

MILESTONE 1 (STAGE 1) - WHY/HOW LADDERING

Team Number:

Team THURS-14

- 1. Document both your conversation and a refined visual on a separate sheet of paper
- 2. Take a photo of both your rough work and refined visual
- 3. Insert each photo as a Picture (Insert > Picture > This Device)
- 4. Do not include more than one Picture per page

	Enhances quality of life.		
	Healthier Environment.	Increase recycling output.	Increases sustainability
		Decrease Labour Hours.	and maintainability of
			scarce resources.
	Less pollution.	Save time and resources.	Recycled material can
			be used instead of new
			material.
Why?	To reduce waste.	Increase efficiency of recycling	Lowers the need for
		centers.	production of new
			plastics /metals

Initial Problem Statement: Design a system for sorting and recycling containers.

How?	Determine the correct type of waste.	Place the waste into the bin	Move the waste from the bin into the appropriate box
	Use a sensor. Types of Sensors: Ultrasonic, LDR, Hall, Color, Active IR(Infrared) and Retro-reflective Photoelectric	Use automation.	Determine the right box using a color sensor. Move the Q- Bot to the box.
		Program a robotic arm to do it automatically.	Use a rack and pinion to deposit them in the box automatically.

— Page Break —

MILESTONE 1 (STAGE 2) – LIST OF OBJECTIVES AND CONSTRAINTS

Team Number: THURS-14

As a team, create a list of objectives and constraints in the table below. The exact number you should have depends on what information you have gathered from the Project Pack as well your previously completed needs hierarchy.

Objectives	Design a system that deposits the waste containers in their respective bins Design a code that will detect if a container is recyclable and moves the Q-arm accordingly Design a code that moves the Q-Bot to the appropriate bin depending on the type of waste
Constraints	All code must be written in python and interface with Quanser-Labs (Computing) Components must fit on baseplate with the size of 130.175 mm x 101.6 mm (Modelling) Components must connect directly to the actuator and supports the hopper. (Modelling) Destination bin is based on material and its recyclability (Computing) Components at one end of the base plate must move with the actuator (Modelling)

MILESTONE 1 (STAGE 3) – REFINED PROBLEM STATEMENT

Team Number:

THURS-14

Initial Problem Statement

 Write the initial problem statement in the space below. This will have been defined in a previous lecture, prior to your scheduled Design Studio.

Design a system for sorting and recycling containers.

Refined Problem Statement

 Write the refined problem statement below. Kindly refer to the Refined Problem Statement rubric provided on Avenue (see <u>P3 Rubrics</u>). This will guide your group in creating a valid statement.

Design a system for sorting and recycling containers - that should be fully automated - to reduce recyclable <u>waste</u>, <u>and</u> increase the sustainability and maintainability of scarce resources.

Milestone 2

PROJECT THREE: MILESTONE 2 - COVER PAGE

Team Thurs-Number: 14

Please list full names and MacID's of all present Team Members.

Full Name:	MacID:
Kartik Chaudhari	chaudk4
Yuvraj Sandhu	Sandhuy
Kelvin Weng	wengc3
Mahmoud El Shafei	elshafem

MILESTONE 2 (STAGE 1) – SENSOR RESEARCH (COMPUTATION SUB-TEAM)

Team Thurs-Number: 14

You should have already completed this task individually prior to Design Studio 14.

- Each team member is expected to research 3 types of sensors for characterizing bins
 - → Refer to Table 3 of the Computation Sub-Team Objectives document
- 2. For each sensor:
 - → Briefly describe how the sensor works
 - → Indicate the attribute you would measure to characterize each bin (refer to Table 4 of the Computation Sub-Team Objectives document)

We are asking that you submit your work on both worksheets. It does seem redundant, but there are valid reasons for this:

- Each team member needs to submit their sensor research with the Milestone Two Individual Worksheets document so that it can be graded
- Compiling your individual work into this Milestone Two Team Worksheets document allows you to readily access your team member's work
 - o This will be especially helpful when completing Stage 3 of the milestone

Team Number: Thurs-14

Name: Kelvin Weng MacID: wengc3

Sensor Type	Description	Attribute(s)
Color sensor	It can distinguish colors thought the brightness of light, then it sends this signal to the intelligent brick	Used to identify different bin by colors
Hall sensor	In the presence of a magnetic field, <u>It</u> convert magnetic or magnetically encoded information into electrical signals	This can be used to distinguish metals and non-metals
LDR	The light is emitted from the transmitter and the receiver senses the strength of the light to send out different signals.	Different materials have different transparency So the receiver can distinguish different materials by receiving light of different intensities

n--- n---I-

Team Number: Thurs-14

Name: Mahmoud El Shafei MacID: elshafem

Sensor Type	Description	Attribute(s)
Ultrasonic Sensors	An ultrasonic sensor is an electronic device Measures the distance of a target object by emitting ultrasonic sound wave and calculating the time it takes to echo	Can detect distance the bin is from the sensor
Active Infrared (IR) Sensor	Measure and detects infrared light Can be used as proximity sensor LED gives off light, and if an object with a temperature about 5 kelvin passes Infront, infrared light will bounce off and reflects into the sensor. The waves bounce back off a nearby object and enter the sensor again for detection	

Retro-Reflective	Photoelectric sensors consisting of an	
Photoelectric	emitter and receiver	the presence of bins
Sensor	 Light emitted by the emitter is 	
	reflected to the receiver with a reflector	
	 When the reflected light beam is obstructed, the output signal of the sensor changes 	

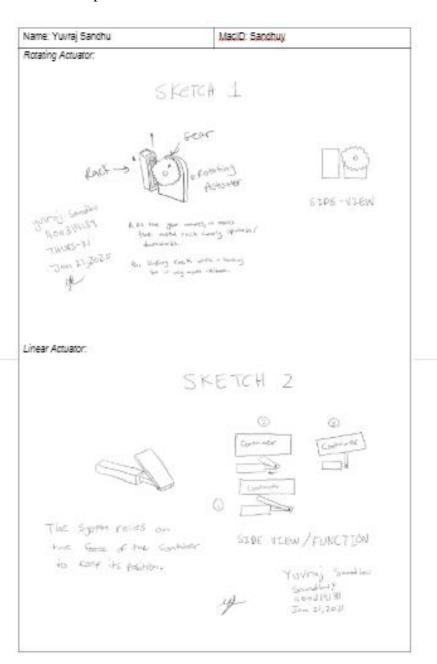
Page Break

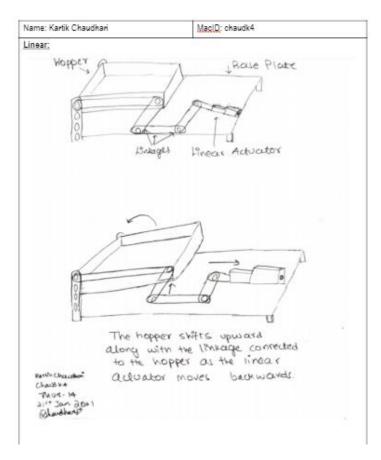
MILESTONE 2 (STAGE 2) – CONCEPT SKETCHES (MODELLING SUB-TEAM)

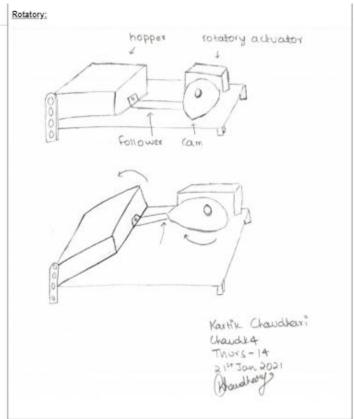
Team Thurs-Number: 14

You should have already completed this task individually prior to Design Studio 14.

- Copy-and-paste each sub-team member's refined sketch on the following pages (1 sketch per page)
 - → Be sure to indicate each team member's Name and MacID


We are asking that you submit your work on both worksheets. It does seem redundant, but there are valid reasons for this:


- Each team member needs to submit their concept sketches with the Milestone Two Individual Worksheets document so that it can be graded
- Compiling your individual work into this Milestone Two Team Worksheets document allows you to readily access your team member's work


Page Break

o This will be especially helpful when completing Stage 4 of the milestone

Team Thurs-

*If you are in a sub-team of 3, please copy and paste the above on a new page

MILESTONE 2 (STAGE 3) – SENSOR CHARACTERIZATION (COMPUTATION SUB-TEAM)

Team Number: Thurs-14

- 1. As a team, consolidate the results of your individual sensor research
 - → Discuss your findings and appropriateness of each sensor for your application
 - → Keep discussion brief, using point form

Sensor Type	Findings and Appropriateness for Application			
Color sensor	Used to identify different bin by colors. It can distinguish colors thought the brightness of light, then it sends this signal to the intelligent brick.			
Hall sensor	This can be used to distinguish metals and non-metals.			
LDR	Different materials have different transparency So the receiver can distinguish different materials by receiving light of different intensities			
Retro-Reflective Photoelectric Sensor	Output sensor changes when beam of light is obstructed, could be used in detecting the presence of bin Not appropriate because its impossible to distinguish between different bins			
Ultrasonic Sensor	With the use of ultrasonic sound waves it can detect if there is an object and determine distance away from the robot It is a good choice to use but it is not as reliable and easy to function as a colour sensor			
Active Infrared (IR) light	Uses the reflected IR light from an object to determine if an object is present. Useful in finding the location of the edges of a bin Could be used but it's much more complicated to function and implement. It only distinguishes the presence of an object not the feature			

3. Identify an attribute value for each bin

Bin ID	Attribute Value
Bin01: Metal Bin	Change colour to red
Bin02: Paper Bin	Change colour to blue
Bin03: Plastic Bin	Change colour to purple
Bin04: Garbage Bin	Change colour to green

MILESTONE 2 (STAGE 4) – DECISION MATRIX (MODELLING SUB-TEAM)

Team Thurs-Number: 14

- 1. As a team, establish a weighting factor for each criterion
 - → Move row-by-row
 - If Criteria 1 is preferred over Criteria 2, assign a 1. Otherwise, assign 0
 - If Criteria 1 is preferred over Criteria 3, assign a 1. Otherwise, assign 0
 - → Add additional rows/columns as needed

4	→	Add additional	rows/columns	s as neede	d			
		Simplicity	Strength	Practical ity	Efficiency	Durability	Ease of modelling	Score
	Simplicity	1	1	1	1	1	1	6
	Strength	0	1	1	1	1	1	5
	Practicality	0	0	1	1	1	1	4
	Efficiency	0	0	0	1	1	1	3
	Durability	0	0	0	0	1	1	2
	Ease of modelling	0	0	0	0	0	1	1

As a team, evaluate your concepts against each criterion using your weighting
 → Add additional rows as needed

		Kartik 1 st Design		Kartik 1 st Design Kartik 2 ^{nd Design}		Yuvra	j's 1 st	Yuvraj 2 nd	
						Des	sign	Des	ign
	Weight	Rating	Weighted Rating	Rating	Weighte d Rating	Rating	Weighted Rating	Ratin g	Weigh ted Rating
Simplicity	6	2	12	4	18	3	18	2	12
Strength	5	2	10	2	10	2	10	3	15
Practicalit y	4	3	12	2	8	2	8	2	8
Efficiency	3	0	0	1	3	1.5	4.5	1	3
Durability	2	0	0	0.5	1	1	2	1	2
Ease of modelling	1	0.5	0.5	1	1	1	1	1	1
TOTAL			35		41		44		41

3. Discuss conclusions based on evaluation, including what concept you've chosen

We've decided to choose the simple rotational actuating design as through our discussion, we have concluded that its simple, yet effective design will be useful in many aspects of this project. As well as the ability to utilize gear ratio's and using simple constraints in Autodesk Inventor will prove to be beneficial.

Milestone 3

	Team Thu
	Number:
Please list full names and MacID's	of all present Team Members
Full Name:	MacID:
Kartik Chaudhari	chaudk4
Mahmoud El Shafei	elshafem
Kelvin Weng	wengc3
Yuvraj Sandhu	Sandhux
	Page Brook
	1A) — WORKFLOW PSEUDOCODE
MILESTONE 3 (STAGE (COMPUTATION SUB-1	1A) – WORKFLOW PSEUDOCODE EAM)
	1A) – WORKFLOW PSEUDOCODE

We are asking that you submit your work on both worksheets. It does seem redundant, but there are valid reasons for this.

- Each team member needs to submit their pseudocode with the Milestone Three Individual Worksheets document so that it can be graded
- Compiling your individual work into this Milestone Three Team Worksheets document allows you to readily access your team member's work
 - This will be especially helpful when completing Stage 3 of the milestone

- Page Break -

Team Number: Thurs-

14

Ξ.

Name: Kelvin Weng

MacID: wengc3

Start the program

- -Drop container on the servo table
- -Identify the mass of the container
- -Identify the material of container
- -Destination is determined based on attributes
- -Q-arm picks up container and drop it into the corresponding colors Q-bot

Repeats;

- -Drop container on the servo table
- -Determine container attributes
- Destination is determined based on attributes
- -If destination same and total weight does not over 90g then drop container into the hopper and repeats.

End infinite loop

MILESTONE 3 (STAGE 1B) – WORKFLOW FLOWCHART / STORYBOARD (COMPUTATION SUB-TEAM)

> Team Thurs-Number: 14


You should have already completed this task individually prior to Design Studio 15.

- 1. Only one team member is responsible for this task (not both)
- 2. Copy-and-paste your flowchart or storyboard on the following page
 - → Be sure to include your Team Number, Name and MacID
- 3. Take a photo of your flowchart / storyboard
- 4. Insert your photo as a Picture (Insert > Picture > This Device)

We are asking that you submit your work on both worksheets. It does seem redundant, but there are valid reasons for this:

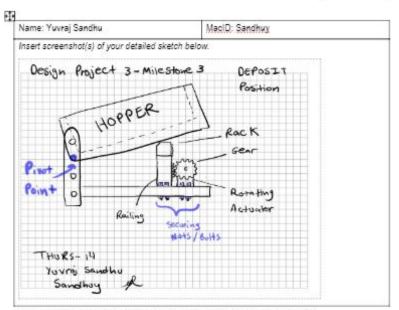
- Each team member needs to submit their flowchart/storyboard screenshots with the Milestone Three Individual Worksheets document so that it can be graded
- Compiling your individual work into this Milestone Three Team Worksheets document allows you to readily access your team member's work
 - o This will be especially helpful when completing Stage 3 of the milestone

Team Thurs-Number: 14

- Page Brea

MILESTONE 3 (STAGE 2) – DETAILED SKETCHES (MODELLING SUB-TEAM)

Team Thurs-Number: 14


You should have already completed this task individually prior to Design Studio 15.

- Copy-and-paste each sub-team member's detailed sketch on the following pages (1 sketch per page)
 - → Be sure to indicate each team member's Name and MacID

We are asking that you submit your work on both worksheets. It does seem redundant, but there are valid reasons for this:

- Each team member needs to submit their detailed sketches with the Milestone Three Individual Worksheets document so that it can be graded
- Compiling your individual work into this Milestone Three Team Worksheets document allows you to readily access your team member's work
 - o This will be especially helpful when completing Stage 4 of the milestone

Team Thurs-Number: 14

^{*}If you are in a sub-team of 3, please copy and paste the above on a new page.

MILESTONE 3 (STAGE 3) – PROGRAM TASK PLANNING (COMPUTATION SUB-TEAM)

Team	Thurs-
Number:	14

- As a team, write out the pseudocode or create a flowchart for the indicated tasks in the space below.
 - → If creating a flowchart, complete your flowchart on a separate sheet of paper, take a photo of your sketch and insert photo as a Picture (Insert > Picture > This Device)

Dispense Container

Rotate the table so container is in its position

Load Container

Moe the Q-arm such as the gripper is lined with the container

Close the gripper.

Rotate the Q-arm is a position such that the container is on top off the Q-bot.

Open the gripper to release the container.

Rotate Q-arm back to its home position.

Transfer Container

Transfer Container

Activate the colour sensor,

while the color sensor detects the matching bin

Move Q-bot travels along the track

Stop Q-bot

Deposit Container

Position the Q-bot adjacent to the bin

Activate timer

While the time elapsed is less than the required time of deposition the container

Rotate the Q-bot

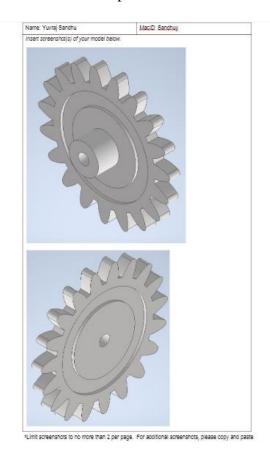
Return Q-bot to home position

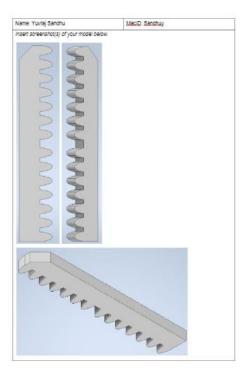
Return Home

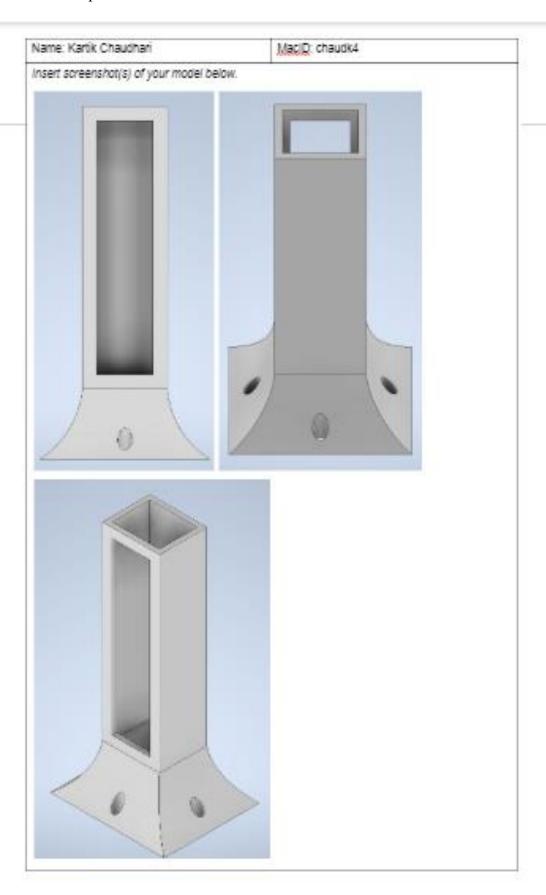
Return home

While Q-bot is not in home position

Move the q-bot along the track


Stop the Q-bot


MILESTONE 3 (STAGE 4) – PRELIMINARY MODELLING (MODELLING SUB-TEAM)


Team Thurs-Number: 14

- As a team, create solid models of the various components of your device in Autodesk Inventor, based on the detailed sketches.
 - → Take multiple screenshots of each solid model you create
 - → Insert your photo(s) as a Picture (Insert > Picture > This Device)
 - → Do not include more than two solid modelling screenshots per page

Team Thurs-Number: 14

Milestone 4

PROJECT THREE: MILESTONE 4 - COVER PAGE

Team Thurs-Number:

14

Please list full names and MacID's of all present Team Members

Full Name:	MacID:
Kartik Chaudhari	chaudk4
Kelvin Weng	wengc3
Mahmoud El Shafei	elshafem
Yuvraj Sandhu	Sandhuy

Page Break -

MILESTONE 4 (STAGE 3) - DESIGN REVIEW FEEDBACK (MODELLING SUB-TEAM)

Thurs-Team Number: 14

Use the space below to document mentor feedback for your design.

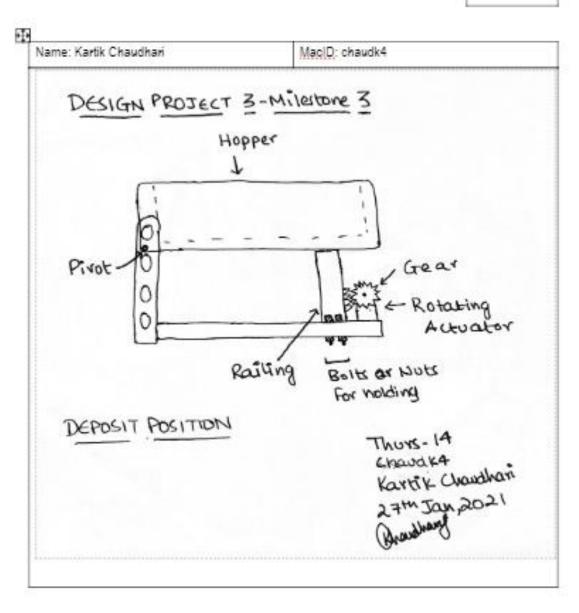
- · Combine gear to the system
- · Parts are already made
- Rack set up
- · Motion constraint in between gear and the rack
- Using rotating actuator
- · When actuator move the rack mores up
- Hopper connected

Use the space below to propose design refinements based on the feedback.

- · Fully finalized and completed the final assembly
- · Added screws to fasten the hopper onto the rungs
- Triple-Checked the motion constraints made on the gear/rack system
- Added support for different types of hoppers

MILESTONE 4 (STAGE 3) – DESIGN REVIEW FEEDBACK (COMPUTATION SUB-TEAM)

Team Thurs-Number: 14

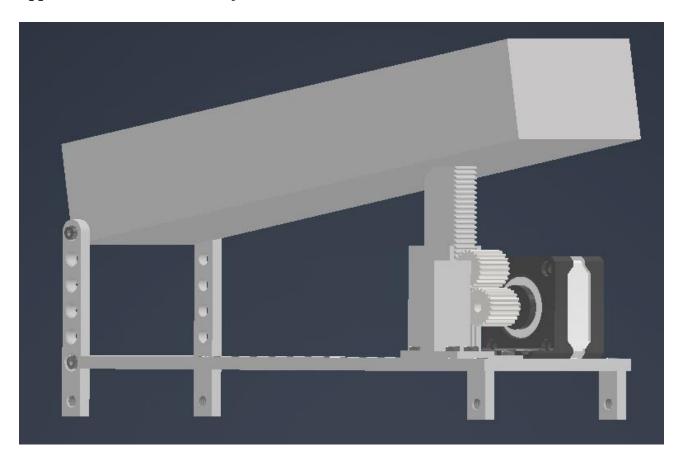

Use the space below to document mentor feedback for your design.

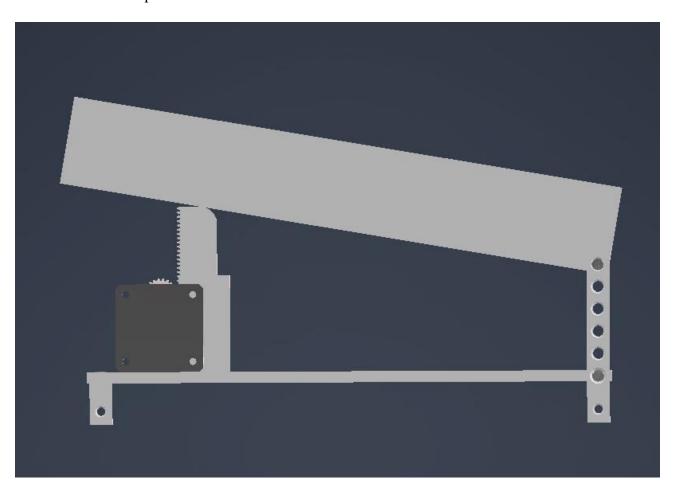
- · Finding the correct coordinates
- · The bottle needed for demonstration
- · Finish the transfer function
- · Coordinates for the home, drop off and pick up position is based on trials

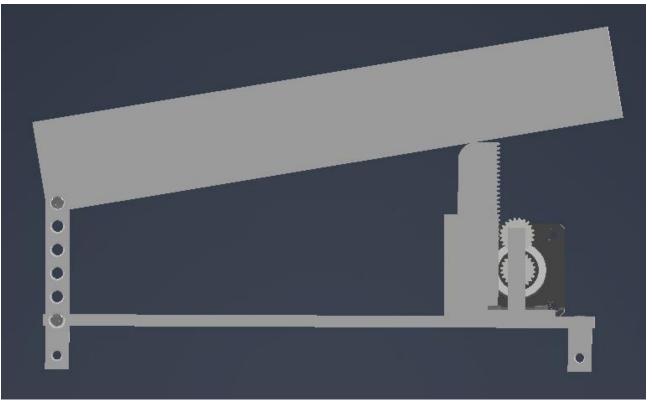
Use the space below to propose design refinements based on the feedback.

- · Change the setting on Q-labs
- · The code or loading the container.
- Figure out the coordinates for home, pick up and drop off position.
- · Adding comments to functions to make code clearer to understand.

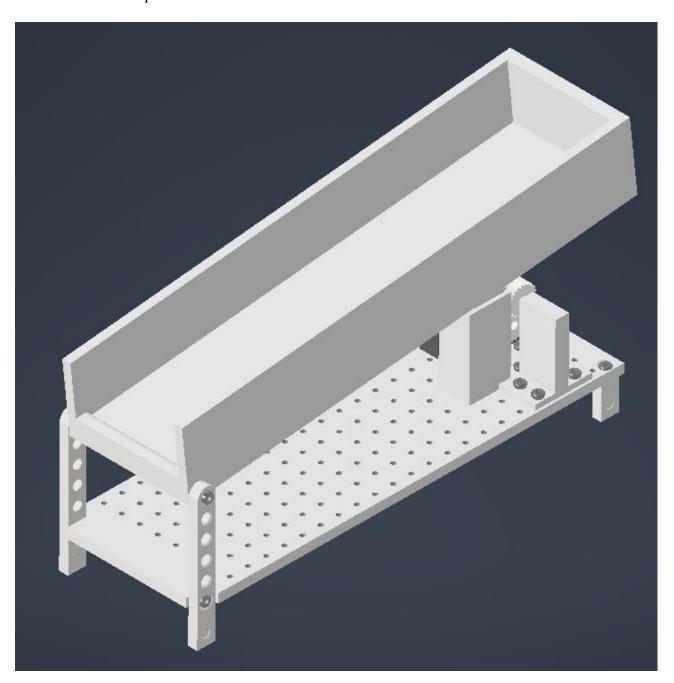
Team Thurs-Number: 14

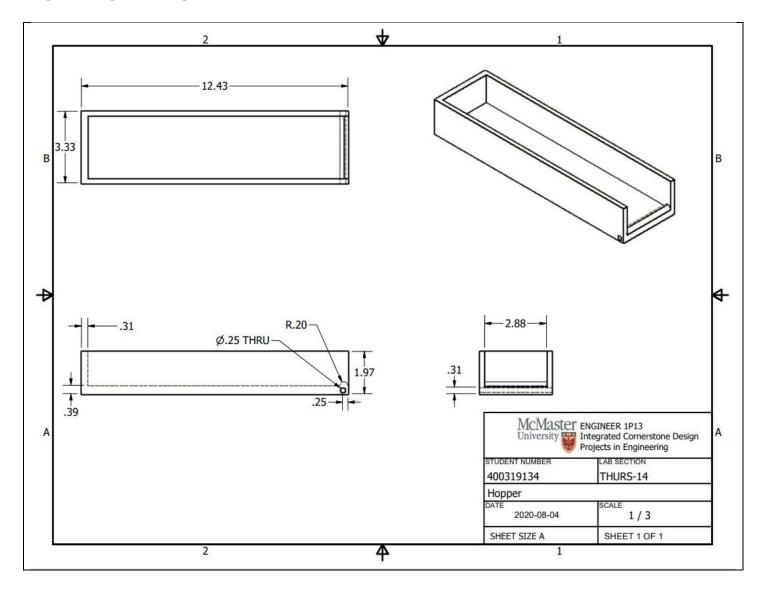

List of Sources:

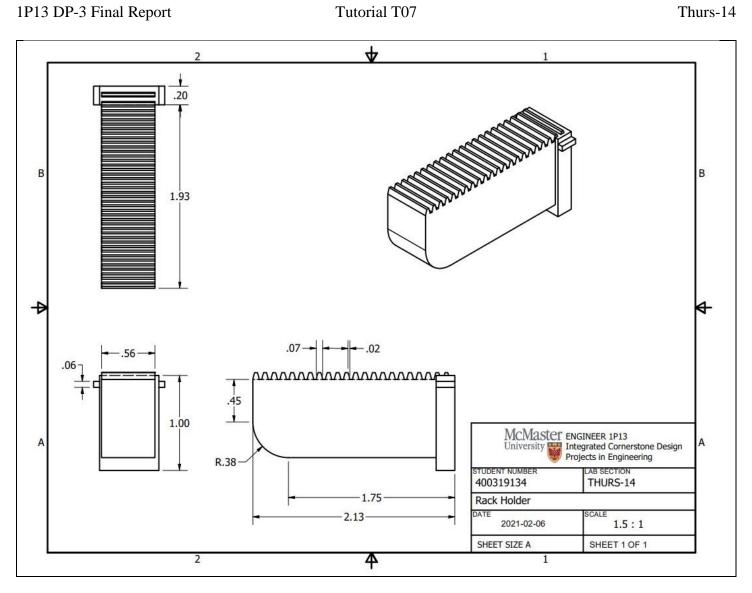

References:

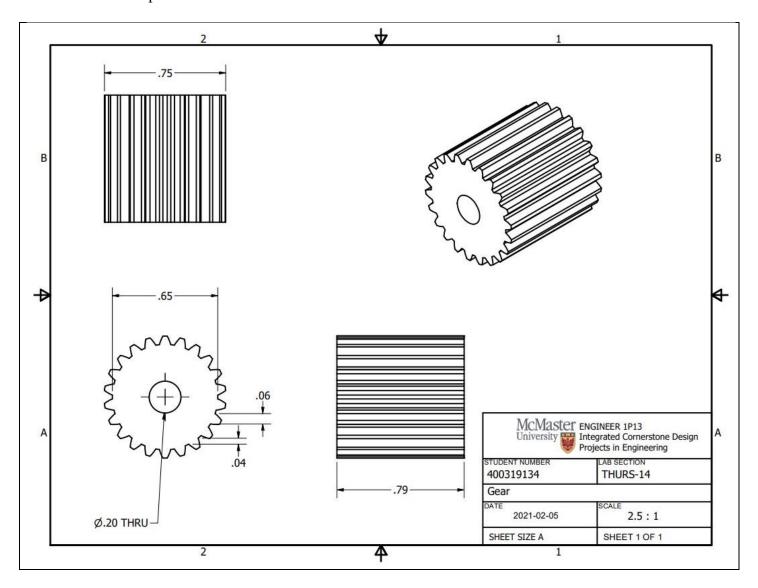

- [1] "What Goes in the Blue Bin (Recycling)?," City of Toronto, 23-Dec-2020. [Online]. Available: https://www.toronto.ca/services-payments/recycling-organics-garbage/houses/what-goes-in-my-blue-bin/. [Accessed: 04-Jan-2021].
- [2] "Canada recycles just 9 per cent of its plastics," Recycling Council of Ontario, 06-Dec-2019. [Online]. Available: https://rco.on.ca/canada-recycles-just-9-per-cent-of-its-plastics/. [Accessed: 04-Jan-2021].
- [3] J. Fingas, "Recycling robot can sort paper and plastic by touch," Engadget, 11-Apr-2019. [Online]. Available: https://www.engadget.com/2019-04-11-mit-recycling-robot.html. [Accessed: 04-Jan-20]

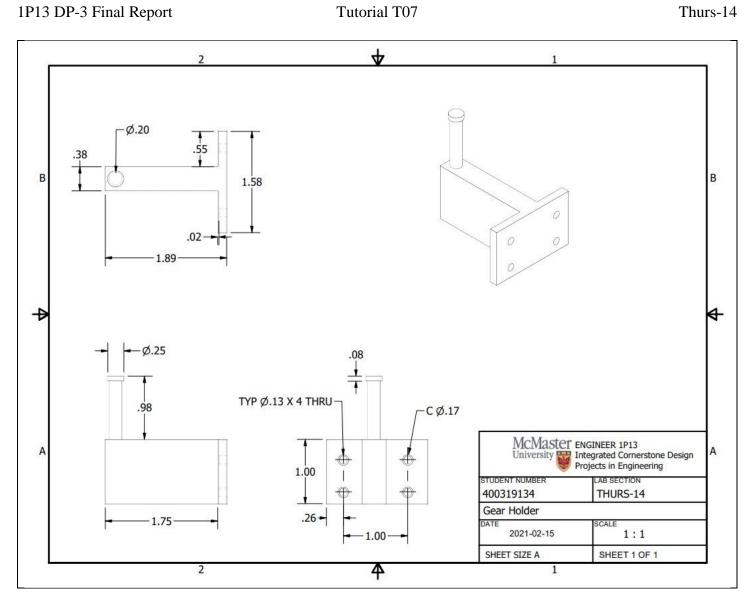

Appendices:


Appendix A – Screenshots of solid model:

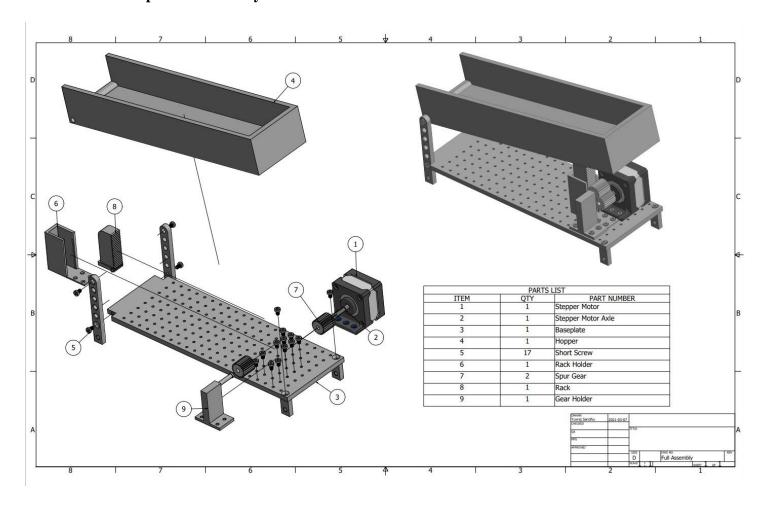







Appendix B – Engineering Drawings and Exploded Assembly:

Engineering Drawings:



Screenshots of Exploded Assembly:

Appendix C – Screenshots of Computer Program:

```
def transfer container (Drop off):
   bot.rotate(187)
   bot.activate ultrasonic sensor()
   lost line = \overline{0}
   while bot.read ultrasonic sensor(Drop_off)>0.1:
       velocity = bot.follow_line(0.2)
       bot.forward_velocity(velocity[1])
       lost_line = velocity[0]
   bot.stop()
   bot.deactivate ultrasonic sensor()
def deposit container():
   bot.activate actuator()
   bot.dump()
   bot.deactivate_actuator()
def return home():
   lost line = 0
   while lost line <2:
       velocity = bot.follow line(0.2)
       bot.forward_velocity(velocity[1])
       lost_line = velocity[0]
   bot.stop()
```

```
def main():
   container on table = False # This variable is to check if there is a mertial on a table
   while (True):
          count number = 0 *Define variable for number of conatiners and the mass
          Mass total = 0
          while (count number <4): # While number of contianers is less than 4
count number=1
                  Drop_off = old_container[0]
                  Mass_total += old_container[1]
                  print('"The total mass ', Mass_total,'"')
                  load container(count number)
                  container on table = False
              mass, ID_Bin = dispense_container()
              print('"The Bin location is ', ID_Bin,'"')
              count number +=1
               if count_number == 1:
                  Mass_total = Mass_total + mass
                  Drop off = ID Bin
                  print('"The total mass ', Mass_total,'"')
                  load container(count_number)
              elif Drop off == ID Bin and Mass total+mass <=90:</pre>
                  Mass_total +=mass
                  print('"The total mass ', Mass_total,'"')
                  load container(count number)
```