PROJECT ONE: MILESTONE 3A – COVER PAGE

Team Number:	03

Please list full names and MacID's of all *present* Team Members

Full Name:	MacID:
Ethan Zamora	zamore2
David Thornton	thorntod
Kartik Chaudhari	chaudk4
Nelson Sam	samn2

MILESTONE 3A (STAGE 1) – MATERIAL SELECTION: PROBLEM DEFINITION

Team Number: 03
Todili Italiiboli

1. Copy-and-paste the title of your assigned scenario in the space below.

2. MPI selection

- List one primary objective and one secondary objective in the table below
- For each objective, list the MPI
- Write a short justification for your selected objectives

	Objective	MPI-	MPI-	Justification for this objective
		stiffness	strength	
Primary	Durability	Ε/ ρ	E	There are high winds which occur in Calgary, which insinuates that the durability of the wind blade is essential to the project. In order to efficiently utilize the full utility of the winds, the wind turbine blades must be able to withstand the high winds. In addition to the high winds, the turbine blade must be able to withstand erosion and other hazards which will physically hinder its performance.
Secondary	Eco-friendly	E/ ρ CO2	E/ ρHm	When customers are deciding to buy a turbine to substitute the electric source they see if the product produces less carbon emission than what they're already using. So, in the perspective of the customer a product that is green while making it and a product that is green after production is what the customer wants.

MILESTONE 3A (STAGE 2) – MATERIAL SELECTION: MPI AND MATERIAL RANKING

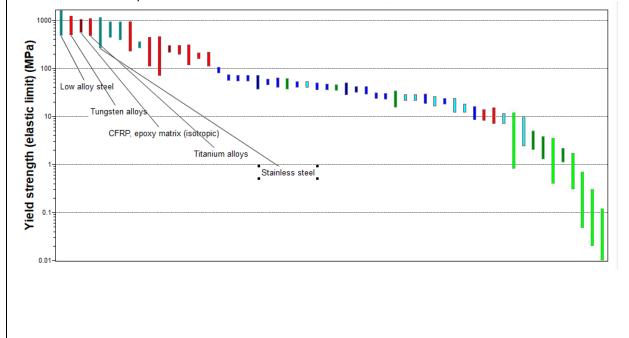
Document the results of your materials selection and ranking on the following page.

→ Each team member is required to complete this on the *INDIVIDUAL* worksheet document, and then copy-and-paste to this document

We are asking that you submit your work on both worksheets. It does seem redundant, but there are valid reasons for this:

- Each team member needs to submit their summary of material property charts with the Milestone Three-A Individual Worksheets document so that it can be graded
- Compiling your individual work into this Milestone Three-A Team Worksheets document allows you to readily access your team member's work
 - This will be especially helpful when completing *Stage 3* of the milestone

Team Number:


03

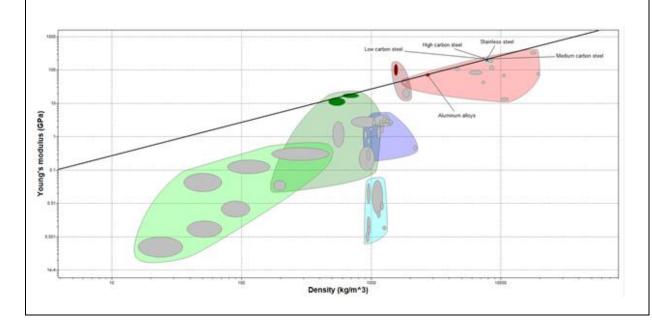
Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Kartik Chaudhari	chaudk4

Material Property Chart			
Assigned MPI #1	Functional Constraint	Objective	
E	Our deflection d is less than some value d* (d < 10.36mm*)	Durability	

Insert a screenshot of the material property chart with MPI guideline. Please clearly label the top 5 materials with their name in the plot.

Team Number:

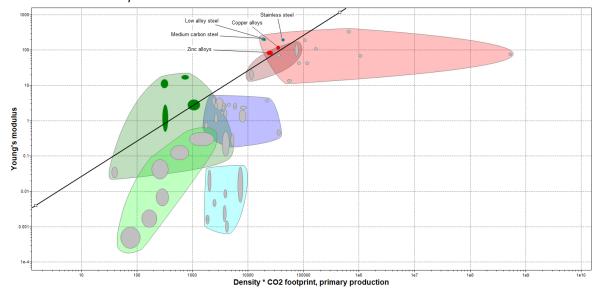

03

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
David Thornton	thorntod

Material Property Chart		
Assigned MPI #2	Functional Constraint	Objective
MPI(mass)=Yield Strength(GPa)/Density(Kg/m³)	Deflection d is less than d* (d <d*) [d*="10.36mm]</td"><td>Minimize Mass</td></d*)>	Minimize Mass

Insert a screenshot of the material property chart with MPI guideline. Please clearly label the top 5 materials with their name in the plot.


Team Number:	

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Ethan Zamora	zamore2

Material Property Chart			
Assigned MPI #3	Functional Constraint	Objective	
E/ ρ CO2	Our deflection d is less than some value d* (d < 10.36mm*)	Eco- Friendly	

Insert a screenshot of the material property chart with MPI guideline. Please clearly label the top 5 materials with their name in the plot.

Team Number:

03

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Nelson Sam	samn2

Assigne	d MPI #4	Functional Constraint	Objective
/ield Strer	ngth/(p*Hm)	Deflection (d) should not exceed the max value of deflection (d*) (d <d*) [d*="10.36" mm]<="" th=""><th>Eco-friendly</th></d*)>	Eco-friendly
	High carbon steel	Medium carbon steel Lainless steel Copper alloys Zinc alloys	

Density * Embodied energy, primary production

^{*}If you are in a team of 5, please copy and paste the above on a new page

MILESTONE 3A (STAGE 3) – MATERIAL SELECTION: MATERIAL ALTERNATIVES AND FINAL SELECTION

Team Number: 03

Consolidation of Individual Material Rankings							
	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5		
	Material	Material	Material	Material	Material		
	Name	Name	Name	Name	Name		
Yield Strength(GPa)	Low Alloy	Tungsten	CFRP,	Titanium	Stainless		
	Steel	Alloys	epoxy	Alloys	Steel		
			matrix				
			(isotopic)				
Yield	Stainless	Low	High	Medium	Aluminum		
Strength(GPa)/Density	steel	carbon	carbon	carbon	alloy		
(Kg/m^3)		steel	steel	steel			
Youngs Mod/ Density *	Stainless	Copper	Zinc Alloy	Low	Medium		
C02	Steel	Alloys		Alloy	Carbon		
				Steel	Steel		
Yield Strength/(p*Hm)	Stainless	High	Medium	Low	Low Carbon		
	Steel	Carbon	Carbon	alloy	steel		
		steel	steel	Steel			

Narrowing Material Candidate List to 3 Finalists		
Material Finalist 1:	Stainless Steel	
Material Finalist 2: Low Alloy Steel		
Material Finalist 3: Medium Carbon Steel		

Team	Num	her.
IGaili	IIIII	IDCI.

03

Compare Material Alternatives and Make a Final Selection using a Decision Matrix

- → As a team, establish a weighting factor for each criterion:
 - Move row-by-row
 - If Criteria 1 is preferred over Criteria 2, assign a 1. Otherwise, assign 0
 - If Criteria 1 is preferred over Criteria 3, assign a 1. Otherwise, assign 0
 - Add additional rows/columns as needed

Criteria Ranking							
	Lightweight	Compatibility	Easy Installation	Safety	Efficiency	Weight factor	
Lightweight	1	0	0	0	0	1	
Compatibility	1	1	1	0	0	3	
Easy Installation	1	0	1	0	0	2	
Safety	1	1	1	1	0	4	
Efficiency	1	1	1	1	1	5	

- → As a team, evaluate your materials against each criterion using your weighting
 - Add additional rows as needed

Decision Matrix								
		Staini	less Steel	Low A	Alloy Steel	Medium	Medium Carbon Steel	
	Weight factor	Rating (1-5)	Weighted Rating	Rating (1-5)	Weighted Rating	Rating (1-5)	Weighted Rating	
Efficiency	5	4	20	5	25	5	25	
Safety	4	3	12	5	20	4	16	
Compatibility	3	4	12	3	9	2	6	
Easy Installation	2	3	6	5	10	4	8	
Lightweight	1	2	2	4	2	3	3	
TOTAL			52		66		58	

Taam	Number	
ıcaiii	NULLING	

03

→ List your chosen material and justify your selection

Justification	
List Chosen	Low Alloy Steel
Material:	

Low allow steel:

Density: Low average density when compared to stainless Streel, but it was relatively the same when compared the medium Carbon Steel.

Strength: During the overall rating of the decision matrix, low alloy steel and medium carbon steel had an edge over stainless steel in terms of efficiency when compared to the young's modus of each material. However, in comparison with the other criteria assessed, low alloy steel has the edge over medium carbon steel.

Carbon footprint: Low Alloy Steel has the lowest Carbon footprint out of Stainless Steel and Medium Carbon Steel

Summary of Chosen Material's Properties

Material Name: Low alloy steel	Average value:	
Young's modulus E (GPa):	205 GPa	
Yield Strength σ_{ν} (MPa):	1035 MPa	
Tensile strength σ_{UTS} (MPa):	1250 MPa	
Density ρ (kg/m ³):	7800 kg/m ³	
Embodiment Energy H_m (MJ/kg)	31.1 MJ/kg	
Specific carbon footprint CO_2 (kg/kg)	2.49 kg/kg	